Hello, Tom from everystepcalculus.com and everystepphysics.com. This is a linear approximation problem in calculus 2, we’ve got two variables, x and y, and let me show you how it’s done. Index 8 to get to my menu at my programs here, I’m already at linear approximation, but you’d scroll to that if you, and we’re gonna choose two variables, here’s the formula, you have the original function plus the partial differentiation for x and partial differentiation for y, and then dx and dy, okay? So this is the formula you’re gonna use. You’re gonna enter the function, you have to press L for first before you enter anything in these entry lines, and the function is alpha. 20, I have to go slow because of the simulator it’ll mess up, minus x, squared, whoops, didn’t need second, squared, minus 7 times y squared, minus 7 times y squared. Oh, that’s a square root so we’ve gotta, we’ll put the parentheses in here, and then I’ll go all the way back to the front, put the square root sign in, the alpha x, see square root of, yeah, it’s correct, it’ll give you a chance to change it in case it’s incorrect, and they’re gonna give us the they want you to approximate the x variables and the y variables at, here’s your alpha first, the x is 1.95, 1.95, and the y value is 1.08, so you alpha 1.08, and again that’ll show you what you’ve entered, you can change it, say it’s okay, and then I choose the points [inaudible] you’re supposed to choose the points closest to it, and equals a and b, okay? So dx is equal to x-a is equal to the x value minus a, -.05, and dy is equal to y -b, 1.08-1 = .08. now we do the derivatives [inaudible] to x, with respect to x, turns out to be this here, with respect to y turns out to be here, and that a and b 2 and 1 you add that into the, you know, the derivative with respect to x, and the function here, and you come up with -.6667. here the same thing for y, for 2 and 1 comes up to -2.3330 or 333. and then we do the original function with 2 and 1, comes up with, here’s the visual function, comes out to 3. so, here’s the formula again, f + fx dx + fy times dy, you add these variables, here’s the answer 2.8467, that’s the answer linear approximation of that, of the original function. Pretty neat how every step calculus got [inaudible] buy my programs and help you do all this stuff for your homework and your tests. Calculus is nonsense so treat it that way, try not to learn too much about it, just pass the tests and get out of there. you have a good one.

Home » Video Blog » Linear Approximation, 2 var, fx = √(20 x^2 7y^2)

## Leave a Reply